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Recap: Abstraction

source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Recap: Abstraction

Classification
G-invariant

Fo={f:X(Q) > R|f(g-z) = f(z) Vg € G}

Segmentation
G-equivariant

Fs={f: X(Q) = X(Q) | f(g-2) =g f(z) Vg € G}



Today

e Geometric Deep Learning Blueprint

e Apply the Blueprint to Sets
o PointNet, Transformers
e Apply the Blueprint to Graphs

o Graph Neural Networks
o Scene Graphs

o Expressivity Limits of Graph Neural Networks



Translation Equivariance and Convolution

1= d] x |d G = {Sk, | Sky = shiftby (k,1)}
X(Q) = R™ (Sks - z) (i,)) =z(i @k, j® )

L:X(Q) — X(Q) is alinear map



Translation Equivariance and Convolution

Q= [d] x [d

X(Q) = R

G = {Sk,l | Sk,l = shift by (k, l)}

(Ski-z)(4,5) =z(i @k, j® )

L:X(Q) — X(Q) is alinear map

Theorem

f(z) = o(L(z)) is

GG-equivariant

=

L(z) is a convolution




What does this mean?

Image Maps
Input

Ko e\

Convolutions FuIIy Connected

Subsampllng
Theorem
finV:X%R finv-fzq- 2(1_1"' ;q:X%R
eq peq eq - is G-invariant
1 , 2 ’ e o o L L[] X % X




Geometric Deep Learning Blueprint
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Classification

source: Bronstein et al. “Geometric Deep Learning: Grids,
Groups, Graphs, Geodesics, and Gauges” 2021.



Geometric Deep Learning Blueprint
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Classification

source: Bronstein et al. “Geometric Deep Learning: Grids,
Groups, Graphs, Geodesics, and Gauges” 2021.



Geometric Deep Learning Blueprint
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source: Bronstein et al. “Geometric Deep Learning: Grids,
Groups, Graphs, Geodesics, and Gauges” 2021.



Geometric Deep Learning Blueprint Segmentation
Q 9 o Q" j
W WV j/

1 L

Un-pooling Layers <



Geometric Deep Learning Blueprint Segmentation
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residual connections




A small twist to our tale ...

CNNs are not strictly translation invariant!

Image Maps Biscione & Bowers “Learning Translation
Input Invariance in CNNs” NeurlPS 2020

=N\

FuIIy Connected

Convolutions
Subsampllng

Theorem

X SR Fo A f X R

eq peq eq - is G-invariant
P X — X

1’ 2’...




Using the Blueprint

Suffices to find invariant and equivariant
functions on different domains

o O O
O



Sets



Equivariance over Sets

Q= [d] X(Q) =R¢ G = {P | P = d x d permutation matrix }

f(P-2) = P- f(a)



Equivariance over Sets

Q= [d] X(Q) =R¢ G = {P | P = d x d permutation matrix }

T1 ¢(z1)




Equivariance over Sets

Q= [d] X(Q) =R¢ G = {P | P = d x d permutation matrix }

L1 ¢(z1)
Can be a permutation
) ¢(z2) invariant function of all
o(-) the inputs




Recall;: Attention and Transformer

Is a permutation equivariant
function over sets

7= 3 plolay) o) - alw)



Invariance over Sets

Q= [d] X(Q) =R¢ G = {P | P = d x d permutation matrix }

F(P-z) = f(=)



Invariance over Sets

Q= [d] xX(Q) = x4 G = {P | P = d x d permutation matrix }

L-—» countable set

Theorem [Zaheer’17]:
f: X)) —-R

“ flz) =1 (@421 ¢(«’l3i)>

is G-invariant 3 6,
Y]

Zaheer et al. “Deep Sets” NeurlPS 2017



Recall: PointNet Architecture

input mlp (64,64) feature mlp (64,128,1024) max
transform > > transform = > pool

> > > <

1024
share d nxl1 024 [ |

| | global feature

nx64
y
nx64

" input points -
nx3
A /
nx3

matrix :
multiply | :

multiply

f({x1, zo, ... 2, }) = max{h(x;), h(xs),... h(z,)}

.....................................................................................................................................................................

mlp
(512,256,k)

v k

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



Simple Example

Permutation equivariant single layer perceptron



Question

Why not use the blueprint with Using G-invariant and G-equivariant
permutation invariant/equivariant single layer perceptrons
single layer perceptron?

Zaheer’s approximation

f(a) = (DL, o))




Question

Why not use the blueprint with Using G-invariant and G-equivariant
permutation invariant/equivariant single layer perceptrons

single layer perceptron?
Are invariant/equivariant

Zaheer’s approximation

fz) = (DL o(z:))

Can approximate any
G-invariant function




Graphs



Domain, Signals, Symmetry, and Function Spaces

Q=G=(V=[d,E) X(Q) = (R?, Ag)

Space of all

G = {P | P = d x d permutation matrix } adjacency matrices
on graph G



Domain, Signals, Symmetry, and Function Spaces

O=G=(V=I[d,E) xX(Q) = (R%, Ag)
Space of all

G = {P | P = d x d permutation matrix } adjacency matrices
on graph G

F™ ={f:X(Q) = R| f(Pz, PAPT) = f(z, A)}

F ={f: X(Q) > R| f(Pz, PAPT) = P f(x, A)}



Constructing Permutation Invariant Function

Easy! Any guesses?



Constructing Permutation Equivariant Functions

Local function that operates over
node neighborhoods [ — @(Xl» Xn,) =

- ¢(X2»XN2) -

F(X,A) =
Local function must be invariant
to order of neighbors -

— X)) -



Applying the Blueprint g ﬁ QQ

Node classification
Z; = f(hi)

Graph classification

lze=f (Dicy hi)

| Link prediction
zi; = f(hi, by, e;;)

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Applying the Blueprint ﬁ ﬁ gg

Node classification

zi = f(hi)  Equivariant

~ Graph classification
26 = [ (BDjev hi)

Invariant

| Link prediction
zi; = f(hi, h;,e;;)

Equivariant

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Constructing Permutation Equivariant Functions

@(Xp X, )

How to construct these F(X,A) = B ¢(X2’XN2) -

local functions?

|~ qb(xn:XNn) T




Popular Graph Neural Networks

Xa
\(_{m (:.M)
\Xb : "
Chd \Cl)('
Xd Xe
Convolutional
hi =¢ @ Ci ]lp( )
JEN;

xa ........... . xa ........... .
\a | &
Qpg bb my, i
B e, a 2 RS A
------- Xp < Qbe Xe e Xpe— M (Xe
............. .‘;_. Y
....... » (V] < Qlpe RS § s [ e mye
X < Xd " Xe

Message-passing

h; = ¢ | xi @ a(xix)w(x) b = ¢ | xi @w(xix))

JEN; JEN;

Attentional

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



"‘ - PyTorch Geometric

‘\ ’l https://www.pytorch-geometric.read
." thedocs.io/

Popular Graph Neural Networks

Xa xa ........... Xa ........... <
.
( bb b Qpp my, myp
Xb < G Xe i Xp < ....... Qe & @ Xp ;—'mbcY Xe
/ \ \' .............. / \V ...........
Chd Che e > (Upd < Obe e > My < mp,
X X X4 " Xd Xe
Convolutional Attentional Message-passing
h = ¢ | x, @ v (x) h; = & | xi @ alxe x)v(x)) h, = ¢ x, @Pv(xix))
JEN; JEN; JEN;

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.


https://pytorch-geometric.readthedocs.io/
https://pytorch-geometric.readthedocs.io/

Constructing Equivariant and Invariant GNN

Node, edge, and graph features

Xg

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Constructing Equivariant and Invariant GNN

Node, edge, and graph features

Xg

hy, = ‘/J(xu» Xv) Xuw» Xg)

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Constructing Equivariant and Invariant GNN

Node, edge, and graph features

UEN,

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Constructing Equivariant and Invariant GNN

Node, edge, and graph features

Xg

(u,v)EE

veV hg =p hu' @ huv'xg
uevy (u,v)eE

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Constructing Equivariant and Invariant GNN

Node, edge, and graph features

The geometric deep learning blueprint
(equivariant and invariant layers)
features extensively in GNs

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Scene Graphs

SG = (O, R, E)

objects
relations

edges

Scene Graph

image source: Krishna et al. “Visual Genome” 2016

woman

N
/\ - shorts

standing is behind —> man

l

jumping over

y

fire hydrant

v

yellow

Legend: objects attributes relationships

O = {o; = (¢, a;) | ¢; = class, a; = attribute}
R = {r; | r; = relation}

ECOxRxO e = (s,p,0)

subject-predicate-object



Scene Graphs

SG = (O, R, E)

objects )

relations

edges

G = (0, E)

Scene Graph

(4

image source: Krishna et al. “Visual Genome” 2016

woman

\ .
/\ - shorts

standing is behind —> man

l

jumping over

y

fire hydrant

v

yellow

Legend: objects attributes relationships

O = {o; = (¢, a;) | ¢; = class, a; = attribute}
R = {r; | r; = relation}

ECOxRxO e = (s,p,0)

subject-predicate-object



Scene Graph Generation

Given a segmented 3D scene (voxel, point cloud,
mesh), construct a scene graph

Problems
q@ ety Node class and attribute labeling
] O Relationship prediction and
. z labeling

image source: Wald et al. “Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions” CVPR 2020



Two Approaches

e Conditional random field based methods

e Graph neural network based methods

BB + PointNet

—p

Need to extract expressive enough
input features for objects and relations

image source: Wald et al. “Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions” CVPR 2020



Two Approaches

e Conditional random field based methods

e Graph neural network based methods

BB + PointNet

Need to extract expressive enough
input features for objects and relations

image source: Wald et al. “Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions” CVPR 2020



CRF-based Approaches

Function parameterized by W

P(re =r|xs,, @ ,2,,) = %exp{@('r | zs, 2,y 2o, , W)}

BB + PointNet

Need to extract expressive enough
input features for objects and relations

image source: Wald et al. “Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions” CVPR 2020



CRF-based Approaches

Function parameterized by W

P(re =1 |2, 2, ,x0,) = %exp{@(r | zs, 2 20, , W)}

Limitation

Does not take into account the spatial correlations between different objects
and their relationship in the scene



GNN-based Approaches

1 Ls MLP hs
Ly > :IZ;
Lo ho

Propagate message across
! . _
2. hz _ "/) (@j: (i—r—j)eE hJa EBj; (j—r—z’)eEhJ) the graph and help learn

Spatial correlations

3. zi =ux; + MLP(h!)

Wald et al. “Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions” CVPR 2020



Problems

Limited expressivity of graph neural networks



Limited Expressivity of Graph Neural Networks

Cannot distinguish between | 7 / | |
two different graphs. a8

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Limited Expressivity of Graph Neural Networks

Cannot distinguish between
two different graphs.

input graph

input
ayer

1-hop

what GNNs see

klu N
=3 =
(o] [o]
© ©

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Limited Expressivity of Graph Neural Networks

Graph Isomorphism Problem

Give two finite graphs G and H, determine if they are isomorphic

e Hard problem to solve.
e Not known if polynomial time or NP-complete.
e Complexity exponential in graph treewidth.



Weisfeiler-Lehman Test for Graph Isomorphism

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Weisfeiler-Lehman Test for Graph Isomorphism

d(o, {o,0})
$(o, {0,0,0})

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Weisfeiler-Lehman Test for Graph Isomorphism

¢(o, {o,0}) oo, { , B
(o, {@,0,0}) ¢(o, {v,0,0})

1
/
/

(e, T, 0])

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Weisfeiler-Lehman Test for Graph Isomorphism

¢(o, {o,0}) d(o, { , B
(o, {@,0,0}) ¢(», {v,0,0})

1
4
' 4

(e, T, 0})

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Weisfeiler-Lehman Test for Graph Isomorphism

$(o, {o,0}) ¢(0 ()]
¢(o, {@,0,0}) ,{0,0,0})

¢(0. t.oh)

AZ%/%A:

et al. “Geometric Deep Lea s for AMMI, 2021.



Weisfeiler-Lehman Test for Graph Isomorphism

¢(o, {o,0}) d(o, { , B
(o, {@,0,0}) ¢(o, {v,0,0})

/‘%
{

d(e, {0}

My Ay My Ay

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.

Used as an approximate solution to
the Graph Isomorphism Problem




Limited Expressivity of Graph Neural Networks

e Expressivity of graph neural networks is less than the
Weisfeiler-Lehman test.

e For discrete feature space, graph isomorphism network
does as well as the Weisfeiler-Lehman test.

zy, = MLP ((1 4 €)zy + > ,cn, Tu)

Xu et al. “How Powerful are Graph Neural Networks?” ICLR 2019

e Does not hold for continuous feature space!

Why?



Improving Expressivity of Graph Neural Networks

Sefs

Using G-invariant and G-equivariant
single layer perceptrons

Standard Graph Neural Networks

f()

Zaheer’s approximation

=1 (@4:1 ¢(33z))




Improving Expressivity of Graph Neural Networks

Sefs

Using G-invariant and G-equivariant
single layer perceptrons

Are invariant/equivariant

Standard Graph Neural Networks

Are invariant/equivariant

Zaheer’s approximation

f(a) = o (DL, o))

Can approximate any
G-invariant function




Improving Expressivity of Graph Neural Networks

Sefs

Using G-invariant and G-equivariant
single layer perceptrons

Are invariant/equivariant

Standard Graph Neural Networks

Are invariant/equivariant

Zaheer’s approximation

f(a) = o (DL, o))

Can approximate any
G-invariant function

Architecture that can approximate
any G-invariant/equivariant function




Improving Expressivity of Graph Neural Networks

k_, Space of all G-invariant

functions

Functions that an architecture can
approximate



k-order Graph Neural Network

G=(V,E)

Form a k-order Graph

GF = (Vkv E)

Graph Neural Network on k-order graphs

~

=

v

1-GNN

2-GNN

I

>

3-GNN

MLP

Learning higher-order graph properties

Y

Morris et al. “Weisfeiler and Leman Go
Neural: Higher-order Graph Neural
Networks” 2019



k-order Graph Neural Network

Form a k-order Graph

G=(V,E)

Graph Neural Network on k-order graphs

GF = (Vkv E)

~

1-GNN

2-GNN

3-GNN

Can approximate any
G-invariant function as

k — oo

MLP

(oa | ——

Learning higher-order graph properties

A 4

Morris et al. “Weisfeiler and Leman Go
Neural: Higher-order Graph Neural
Networks” 2019



Improving Expressivity of Graph Neural Networks

Using G-invariant and G-equivariant
single layer perceptrons

Are invariant/equivariant

Standard Graph Neural Networks

Are invariant/equivariant

Zaheer’s approximation

Can approximate any
G-invariant function

Ongoing
Research

Architecture that can approximate
any G-invariant/equivariant function




Models for Scene Graphs

Probabilistic graphical models have been used to describe scene graphs

1 2020
p(X_| g) - E | I 2/}0 (XC) Generative Modeling of Environments with Scene Grammars

and Variational Inference

Gregory Izatt and Russ Tedrake
{gizatt, russt}@csail.mit.edu

Abstraci—How do we verify that a cleaning robot that we
have tested only in a simulator and in case studies in the lab, will
work in every house in the world? A ritical step in answering

product of 018
Clique pOtentials Human-centric Indoor Scene Synthesis Using Stochastic Grammar

Siyuan Qi'  Yixin Zhu'  Siyuan Huang' Chenfanfu Jiang® Song-Chun Zhu'

EXa Ct infe rence iS N p_hard and L UCLA Center for Vision, Cognition, Learning and Autonomy
. . . 2 UPenn Computer Graphics Grou
exponential in graph treewidth e Compuier Graphies Grove

A%

Creating Consistent Scene Graphs Using a Probabilistic Grammar 2014 o
Tiangiang Liu!  Siddhartha Chaudhuri'?  Vladimir G. Kim?®  Qixing Huang3** Niloy J. Mitra®> Thomas Funkhouser! ;;gj

'Princeton University 2Cornell University 2Stanford University *Toyota Technological Institute at Chicago >University College London isa
odes

| sl ‘F}Bedmom
| Bea ::f:/ Window rted
supported gmu:;/ en-
| urtain 3
(xz) 3 inal
mm‘a
torage area cene
i p GBed Pl\l;owsl rea. Dtmse‘/ Dom se!/ rkov Figure 1: An example of synthesized indoor scene (bed-
pillow Doo, room) with affordance heatmap._The joint sampline of a
g < Closet
i Bed Metress Shell !oset & n 5
shelf  Closet oset: | it
(@) Input (b) Output leaf nodes (¢) Output hierarchy
Figure 1: Our algorithm processes raw scene graphs with possible over-s ion (a), obtained from repositories such as the Trimble

Warehouse, into consistent hierarchies capturing semantic and functional groups (b,c). The hierarchies are inferred by parsing the scene




New: Neural Trees

Generate a tree structured

- Neural Tree architecture e A ORISRt
- Approximation Results 7
Input graph with node 1 2 1 3 2 o

attributes (colors)

Generated tree structured graph

- Experiments

Neural Tree is message passing on H-tree

. . . Exact inference on
Any (smooth) graph compatible function can be approximated by a Neural Tree
with number of weights/parameters

equivalent

N=0(n-(tw(G)/ e)OtW(G) ——
o eiG) e =

approximated w.

bedroom

finitely many

num. treewidth approx.
nodes distance e
H Graph R
invariant/equivariant

functions

Rajat Talak, Siyi Hu, Lisa Peng, and Luca Carlone “Neural Trees for Learning on Graphs” NeurlPS 2021



Conclusion

High-level
planning

Semantic
Understanding

Trajectory Planning

--------------------------- * desired

Path
planning

Trajectory
optimization

map and current
robot state

‘trajectory

Dense 3D
reconstruction

control
inputs

>30Hz

~1Hz

optimization)

Controller Robot
Estimator
(e.g., Visual (e gsecnasr%resras)
Odometr I
> y)
SLAM Loop closure
(e.g., pose Pl detection
graph (e.g., place

recognition)

robot’s
state




Backup



Error Decomposition



