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Recap: Abstraction

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Classification

Segmentation

Recap: Abstraction

G-invariant

G-equivariant



Today

● Geometric Deep Learning Blueprint

● Apply the Blueprint to Sets
○ PointNet, Transformers

● Apply the Blueprint to Graphs
○ Graph Neural Networks

○ Scene Graphs

○ Expressivity Limits of Graph Neural Networks



Translation Equivariance and Convolution



Translation Equivariance and Convolution

Theorem



What does this mean?

Theorem



Geometric Deep Learning Blueprint

Classification

source: Bronstein et al. “Geometric Deep Learning: Grids, 
Groups, Graphs, Geodesics, and Gauges” 2021.



Geometric Deep Learning Blueprint

Classification

Pooling Layers
source: Bronstein et al. “Geometric Deep Learning: Grids, 

Groups, Graphs, Geodesics, and Gauges” 2021.



Geometric Deep Learning Blueprint

Classification

Pooling Layers
source: Bronstein et al. “Geometric Deep Learning: Grids, 

Groups, Graphs, Geodesics, and Gauges” 2021.



Geometric Deep Learning Blueprint Segmentation

Un-pooling Layers



Geometric Deep Learning Blueprint Segmentation

residual connections



A small twist to our tale … 

Theorem

CNNs are not strictly translation invariant!
Biscione & Bowers “Learning Translation 

Invariance in CNNs” NeurIPS 2020



Using the Blueprint

Suffices to find invariant and equivariant 
functions on different domains



Sets



Equivariance over Sets



Equivariance over Sets



Equivariance over Sets

Can be a permutation 
invariant function of all 
the inputs



Recall: Attention and Transformer
is a permutation equivariant 
function over sets



Invariance over Sets



Invariance over Sets

countable set

Zaheer et al. “Deep Sets” NeurIPS 2017

Theorem [Zaheer’17]:



Recall: PointNet Architecture

Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” CVPR 2017



Simple Example

Permutation equivariant single layer perceptron



Question

Why not use the blueprint with 
permutation invariant/equivariant 
single layer perceptron?

Using G-invariant and G-equivariant 
single layer perceptrons

Zaheer’s approximation 



Question

Why not use the blueprint with 
permutation invariant/equivariant 
single layer perceptron?

Using G-invariant and G-equivariant 
single layer perceptrons

Zaheer’s approximation 

Are invariant/equivariant

Can approximate any 
G-invariant function



Graphs



Domain, Signals, Symmetry, and Function Spaces

Space of all 
adjacency matrices 
on graph G



Domain, Signals, Symmetry, and Function Spaces

Space of all 
adjacency matrices 
on graph G



Easy! Any guesses?

Constructing Permutation Invariant Function



Constructing Permutation Equivariant Functions

Local function that operates over 
node neighborhoods

Local function must be invariant 
to order of neighbors



Applying the Blueprint

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Applying the Blueprint

Equivariant

Equivariant

Invariant

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Constructing Permutation Equivariant Functions

How to construct these 
local functions?



Popular Graph Neural Networks

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Popular Graph Neural Networks
PyTorch Geometric

https://www.pytorch-geometric.read
thedocs.io/ 

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.

https://pytorch-geometric.readthedocs.io/
https://pytorch-geometric.readthedocs.io/


Constructing Equivariant and Invariant GNN

Node, edge, and graph features

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Node, edge, and graph features

Constructing Equivariant and Invariant GNN

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Constructing Equivariant and Invariant GNN

Node, edge, and graph features

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Constructing Equivariant and Invariant GNN

Node, edge, and graph features

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Constructing Equivariant and Invariant GNN

Node, edge, and graph features

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Scene Graphs

objects

relations

edges

subject-predicate-object

image source: Krishna et al. “Visual Genome” 2016



Scene Graphs

objects

relations

edges

subject-predicate-object

image source: Krishna et al. “Visual Genome” 2016



Scene Graph Generation

Given a segmented 3D scene (voxel, point cloud, 
mesh), construct a scene graph

Problems

Node class and attribute labeling

Relationship prediction and 
labeling

image source: Wald et al. “Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions” CVPR 2020



Two Approaches

● Conditional random field based methods

● Graph neural network based methods

Need to extract expressive enough 
input features for objects and relations 

But first ...

BB + PointNet

image source: Wald et al. “Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions” CVPR 2020



Two Approaches

● Conditional random field based methods

● Graph neural network based methods

Need to extract expressive enough 
input features for objects and relations 
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BB + PointNet

image source: Wald et al. “Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions” CVPR 2020



CRF-based Approaches

Need to extract expressive enough 
input features for objects and relations 

BB + PointNet

Function parameterized by W

image source: Wald et al. “Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions” CVPR 2020



CRF-based Approaches
Function parameterized by W

Limitation

Does not take into account the spatial correlations between different objects 
and their relationship in the scene



GNN-based Approaches

1.

2.

3.

MLP

Propagate message across 
the graph and help learn 
spatial correlations

Wald et al. “Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions” CVPR 2020



Problems

Limited expressivity of graph neural networks



Limited Expressivity of Graph Neural Networks

Cannot distinguish between 
two different graphs. 

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Limited Expressivity of Graph Neural Networks

Cannot distinguish between 
two different graphs. 

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Limited Expressivity of Graph Neural Networks

Graph Isomorphism Problem

Give two finite graphs G and H, determine if they are isomorphic

● Hard problem to solve. 
● Not known if polynomial time or NP-complete.
● Complexity exponential in graph treewidth.



Weisfeiler-Lehman Test for Graph Isomorphism

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Weisfeiler-Lehman Test for Graph Isomorphism

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Weisfeiler-Lehman Test for Graph Isomorphism

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Weisfeiler-Lehman Test for Graph Isomorphism

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Weisfeiler-Lehman Test for Graph Isomorphism

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Weisfeiler-Lehman Test for Graph Isomorphism

Used as an approximate solution to 
the Graph Isomorphism Problem

image source: Bronstein et al. “Geometric Deep Learning” Lectures for AMMI, 2021.



Limited Expressivity of Graph Neural Networks

● Expressivity of graph neural networks is less than the 
Weisfeiler-Lehman test.

● For discrete feature space, graph isomorphism network 
does as well as the Weisfeiler-Lehman test.

● Does not hold for continuous feature space!
Why?

Xu et al. “How Powerful are Graph Neural Networks?” ICLR 2019



Improving Expressivity of Graph Neural Networks

Using G-invariant and G-equivariant 
single layer perceptrons

Zaheer’s approximation 

Standard Graph Neural Networks
Sets Graphs



Improving Expressivity of Graph Neural Networks
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Standard Graph Neural Networks

Are invariant/equivariant Are invariant/equivariant

Can approximate any 
G-invariant function
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Improving Expressivity of Graph Neural Networks

Using G-invariant and G-equivariant 
single layer perceptrons

Zaheer’s approximation 

Standard Graph Neural Networks

Are invariant/equivariant Are invariant/equivariant

Can approximate any 
G-invariant function

Architecture that can approximate 
any G-invariant/equivariant function

Sets Graphs



Improving Expressivity of Graph Neural Networks

Space of all G-invariant 
functions

Functions that an architecture can 
approximate

Gap



k-order Graph Neural Network

● Form a k-order Graph 

 

● Graph Neural Network on k-order graphs

Morris et al. “Weisfeiler and Leman Go 
Neural: Higher-order Graph Neural 

Networks” 2019



k-order Graph Neural Network

● Form a k-order Graph 

 

● Graph Neural Network on k-order graphs

Can approximate any 
G-invariant function as

Morris et al. “Weisfeiler and Leman Go 
Neural: Higher-order Graph Neural 

Networks” 2019



Improving Expressivity of Graph Neural Networks

Using G-invariant and G-equivariant 
single layer perceptrons

Zaheer’s approximation 

Standard Graph Neural Networks

Are invariant/equivariant Are invariant/equivariant

Can approximate any 
G-invariant function

Architecture that can approximate 
any G-invariant/equivariant function

Ongoing 
Research



Models for Scene Graphs
Probabilistic graphical models have been used to describe scene graphs

2020

2018

2014

product of 
clique potentials

Exact inference is NP-hard and 
exponential in graph treewidth



• Neural Tree architecture
 

• Approximation Results

• Experiments

New: Neural Trees 

Rajat Talak, Siyi Hu, Lisa Peng, and Luca Carlone “Neural Trees for Learning on Graphs” NeurIPS 2021



Conclusion

High-level 
planning

Semantic 
Understanding



Backup



Error Decomposition


